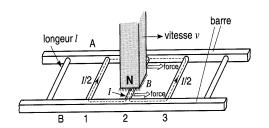
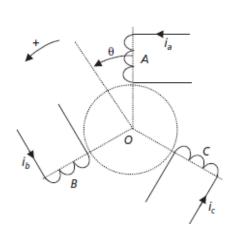
5. Moteur Asynchrone


1. Mise en situation

L'aimant se déplace à la vitesse v, les rails sont conducteurs et forment un circuit fermé .Équation dynamique des rails ?

Les rails sont le siège d'une fém et d'un courant, donc à une force qui va les mettre en mouvement dans le même sens que l'aimant (Lenz), soit V leur


$$e = Bl(v - V); I = \frac{e}{R}, \quad F = i(t)lB = \frac{l^2B^2}{R}(v - V(t)) = m\frac{dV}{dt}$$

$$V(t) = v(1 - e^{-\frac{t}{\tau}})$$
; $\tau = \frac{mR}{l^2 B^2}$ Nous avons construit un moteur asynchrone linéaire.

2. Théorème de Ferraris, production de champ tournant

Trois bobines parcourues par un système de courants triphasé équilibré et décalées de 120°, produisent au centre un champ magnétique tournant à la pulsation des courants. Démonstration dans le cas général de p paires de bobines

$$i_a = I\sqrt{2}\cos\omega t$$
; $i_b = I\sqrt{2}\cos(\omega t - \frac{2\pi}{3})$; $i_c = I\sqrt{2}\cos(\omega t - \frac{4\pi}{3})$

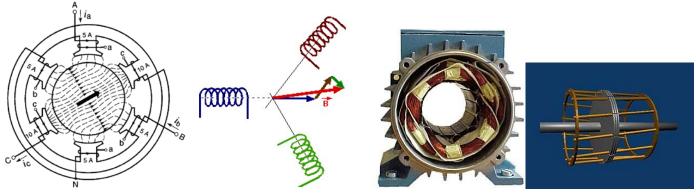
Champ créé par chaque bobine dans la direction θ :

$$B_a = ki_a \cos p\theta$$
; $B_b = ki_b \cos(p\theta - \frac{2\pi}{3})$; $B_c = ki_c \cos(p\theta - \frac{4\pi}{3})$

Champ total:
$$B = B_a + B_b + B_c = k \frac{3}{2} I \sqrt{2} \cos(\omega t - p\theta)$$

Champ tournant dans le sens + à la vitesse
$$\frac{d\theta}{dt} = \frac{\omega}{p}$$

Et si on permute deux courants :


$$B = B_a + B_b + B_c = k \frac{3}{2} I \sqrt{2} \cos(\omega t + p\theta)$$

k dépend du nombre des spires et du noyau magnétique des bobines

Le sens de rotation s'inverse si on permute 2 courants

3. Constitution

Stator: enroulement réparti sur 3 bobines, 6 pôles (2 pôles par bobine), parcouru par les courants triphasés de pulsation $\omega_{\rm s}$. Le champ produit tourne à la même pulsation $\omega = \omega_{\rm s}$

Pour un stator avec p paires de pôles, la vitesse du champ est $\omega = \frac{\omega_s}{\omega_s}$ vitesse de synchronisme.

Rotor: enroulement en court circuit (rotor bobiné) ou simple cylindre métallique (à cage). Principe: le champ tournant coupe un flux variable dans le rotor, celui-ci est le siège de courants induits d'où l'apparition d'un couple moteur qui fait tourner le rotor dans le même sens que le champ tournant à une vitesse Ω légèrement inférieure

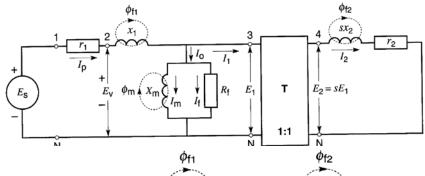
4. Equations (pour p=1)

$$\varphi(t) = B.S.\cos\theta(t) = \varphi_0\cos\left[\left(\omega - \Omega\right)t\right] \quad \text{d'où la fém induite :} \qquad e(t) = -n\frac{d\varphi}{dt} = n.\varphi_0(\omega - \Omega)\sin(\omega - \Omega)t$$

$$E=gE_{co}$$
 avec E_{co} tension induite au rotor bloqué ($\Omega=0$) ; $E=gE_{co}$; $E_{co}=n\varphi_0\omega$

A vide (sans charge): $\Omega \cong \omega$; $E \approx 0$, $I \approx 0$, $C \approx 0$, $g \approx 0$

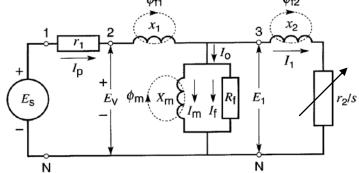
En charge : $\omega - \Omega$ et *I* augmentent, donc *C* aussi jusqu'a équilibrer la charge


Pulsation des courants rotoriques :
$$\omega_r = \omega - \Omega$$
 ; glissement : $g = \frac{\omega - \Omega}{\omega} = 1 - \frac{\Omega}{\omega}$; $\omega_r = g\omega$

Pour le moteur idéal sans pertes fer : $\eta = \frac{P_m}{P_{em}} = \frac{C_m \Omega}{C_{em} \omega} \approx \frac{\Omega}{\omega} = 1 - g$; $g \approx 5\%$. Bon rendement

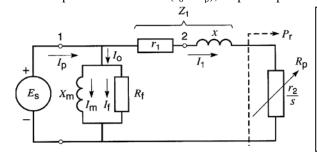
5. Moteur à rotor bobiné. Modèle électrique

Pour les fortes puissances (>10kW), le rotor est bobiné (triphasé étoile en court-circuit). Il est relié à l'extérieur par un collecteur qui peut servir pour agir sur les propriétés (freinage) qui est court-circuité en fonctionnement normal. D'où : très peu de maintenance et durée de vie très élevée, faible coût.


Schéma équivalent par phase (stator/rotor) (s=g)

$$E_{s} = \eta I_{p} + jx_{1}I_{p} + j\omega\varphi_{m}$$

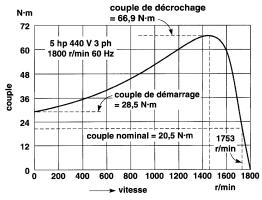
$$V_{2} = 0 = r_{2}I_{2} + jsx_{2}I_{2} + js\omega\varphi_{m}$$


$$\frac{r_{2}}{s}I_{2} + jx_{2}I_{2} + j\omega\varphi_{m} = 0$$

$$E_2 = sE_1 = (jsx_2 + r_2)I_2$$

$$I_1 = I_2 = \frac{E_1}{\sqrt{x_2^2 + (\frac{r_2}{s})^2}}$$
fréquence ω fréquence $s\omega$

Pour les puissances > 2 kW ($I_0 << I_p$), on peut déplacer la branche parallèle à l'entrée

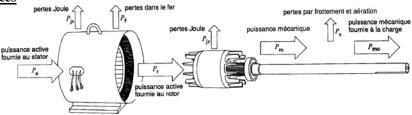


$$C = \frac{P_m}{\Omega} = \frac{P_r(1-s)}{\Omega_s(1-s)} = \frac{P_r}{\Omega_s} ; P_{ab/phase} = \frac{E_s^2}{R_f} + r_1 I_1^2 + \frac{r_2}{s} I_1^2$$

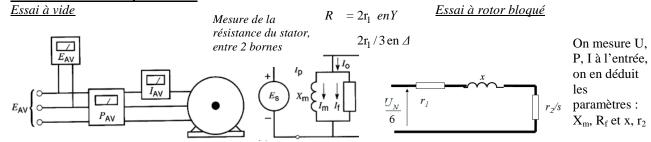
$$Q_{ab/ph} = \frac{E_s^2}{X_m} + x I_1^2 ; I_{ligne} = \frac{\sqrt{P^2 + Q^2}}{E_s}$$

$$P_{jr} = r_2 I_1^2 = s P_r ; P_m = P_r - P_{Jr} = P_r(1-s)$$

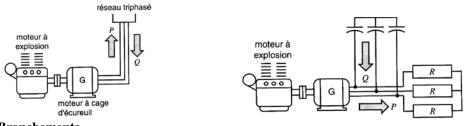
Caractéristique du couple

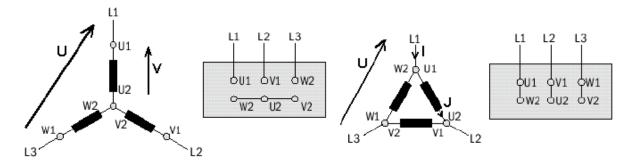

$$r_{1} = 1.5\Omega \quad X_{m} = 110\Omega r_{2} = 1.2\Omega \quad R_{f} = 900\Omega$$

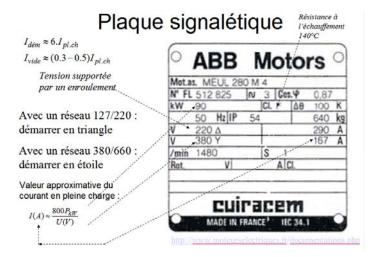
$$C = 3 \frac{E_{s}^{2} r_{2}}{\Omega_{s} s} \frac{1}{(r_{1} + \frac{r_{2}}{s})^{2} + x^{2}}$$


$$C_{d} = 3 \frac{E_{s}^{2} r_{2}}{\Omega_{s}} \frac{1}{(r_{1} + r_{2})^{2} + x^{2}} \quad C_{m} = \frac{3}{{}^{2}} \frac{E_{s}^{2}}{\Omega_{s}} \frac{1}{r_{1} + \sqrt{r_{1}^{2} + x^{2}}} \stackrel{(r_{1} \approx 0)}{\approx} \frac{3}{2} \frac{E_{s}^{2}}{\Omega_{s}} \frac{1}{L\omega}$$

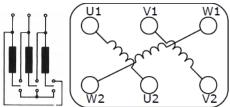
$$\frac{C_{\text{max}}}{C_{d}} \approx \frac{1}{2} \frac{4 + a^{2}}{1 + \sqrt{1 + a^{2}}} \approx \frac{1}{2} a \; ; \quad a = \frac{x}{r} \quad s_{\text{max}} = \frac{r_{2}}{\sqrt{r_{1}^{2} + x^{2}}}$$


7. Détermination des paramètres

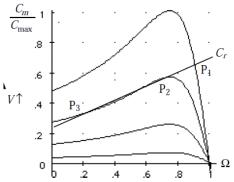

8. Fonctionnement en génératrice


Lorsque le rotor est entraîné à une vitesse supérieure à la vitesse synchrone (Pr <0, le rotor fournit de l'énergie)

La puissance réactive nécessaire pour créer le champ tournant : à partir du réseau ou d'une batterie de condensateurs (autonomie). Éoliennes.

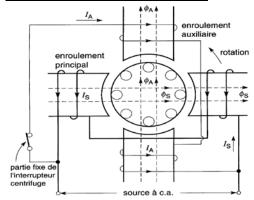


Branchements



On démarre en étoile (pour limiter le courant), ensuite on passe en triangle pour augmenter le couple

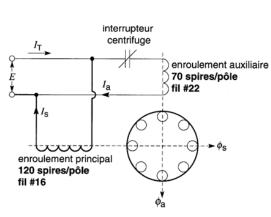
9. Variation de la vitesse :

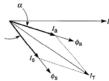


On fait varier la tension, risque d'instabilité

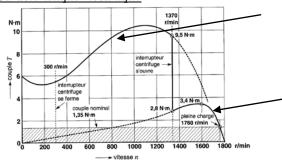
On fait varier U et f, avec U/f constant : stabilité

10. Moteur Asynchrone monophasé

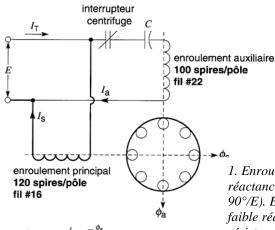



Un enroulement principal, insuffisant pour démarrer (couple nul). Avec l'enroulement auxiliaire : système biphasé (déphasage électrique de $\pi/4$: création de champ tournant. Après le démarrage, l'enroulement auxiliaire est mis hors circuit. Lorsque le rotor est lancé, les barres du rotor sont le siège de courants induits I_r . Les courants induits produisent un flux φ_r en quadrature avec le flux principal.

Couple au démarrage : $C_d = kI_aI_s\sin\alpha$


 I_a : courant auxiliaire, I_s : couarant principal, α : déphasage entre les deux courants

1. Moteur à phase auxiliaire résistive



Caractéristique mécanique

2. Moteur à démrrage par condensateur

Is ϕ_{S}

Les deux enroulements sont excités, vitesse nominale atteinte.

Enroulement principal seul

1. Enroulement principal forte réactance faible résistance (- 90°/E). Enroulement auxiliaire faible réactance, forte résistance (0°/E). Ne convient pas aux démarrages fréquents.
2. C introduit un déphasage +90°/E
Déphasage plus grand entre les

Utilisation même que le triphasé pour les petites puissances (machines à laver, sèche linge, tondeuse, machines outils, pompes, ventilateurs)

2 courants ppal et auxil.