ENONCE

Soit f une fonction définie et dérivable sur $\mathbb{R} - \{-3\}$, dont le tableau de variation est le suivant :

x	-∞	-4	_	3	-1		+∞
f'(x)	-	- 0	+	+	0	+	
f	+∞	10/	≠ +∞		$-\frac{7}{2}$		+∞

On sait, de plus, que pour tout réel $x \ne -3$, f(x) peut s'écrire sous la forme : $ax^2 + b + \frac{c}{x+d}$ où a, b, c, d sont quatre réels (avec

- 1. a. À l'aide des indications fournies par le tableau, déterminer la fonction f.
 - b. Démontrer qu'il existe un réel e tel que : pour tout $x \in \mathbb{R} \{-3\}, f'(x) = \frac{(x+1)^2(x+e)}{(x+3)^2}$
 - c. Justifier toutes les informations du tableau de variation de f.
- Soit C la courbe représentative de f dans un repère du plan et P la parabole d'équation $y = \frac{x^2}{2} 2$ dans le même repère. 2.
 - a. Prouver que P coupe l'axe des abscisses en deux points que l'on déterminera.
 - b. Prouver que C coupe l'axe des abscisses en seul point A. On déterminera une valeur approchée de l'abscisse de A à 10⁻² près.
 - c. Étudier la position relative des courbes C et P.
 - d. Prouver que P est une courbe asymptote de C en $-\infty$ et en $+\infty$.
 - Construire P et C.
 - Résoudre algébriquement l'inéquation : $-0.1 < f(x) (\frac{1}{2}x^2 2) < 0.1$. Interpréter graphiquement.

CORRECTION

1. a. D'après le tableau de variation, on a entre autre que $x \ne -3$ donc d = 3, de plus :

$$f(-4) = 10 \text{ et } f'(-4) = 0 ; f(-1) = -\frac{7}{2} \text{ et } f'(-1) = 0$$

$$f'(x) = 2 a x - \frac{c}{(x+3)^2} \text{ donc} \begin{cases} f(-4) = 16 a + b - c = 10 \\ f'(-4) = -8 a - c = 0 \\ f(-1) = a + b + \frac{c}{2} = -\frac{7}{2} \\ f'(-1) = -2 a - \frac{c}{4} = 0 \end{cases} \Leftrightarrow \begin{cases} 16 a + b - c = 10 \\ c = -8 a \\ a + b - 4 a = -\frac{7}{2} \end{cases} \Leftrightarrow \begin{cases} 24 a + b = 10 \\ c = -8 a \\ -3 a + b = -\frac{7}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} 24 \, a + b + 3 \, a - b = 10 + \frac{7}{2} \\ b = 10 - 24 \, a \\ c = -8 \, a \end{cases} \Leftrightarrow \begin{cases} a = \frac{1}{2} \\ b = -2 \, \text{donc} \, f(x) = \frac{1}{2} x^2 - 2 - \frac{4}{x+3} \end{cases}$$

1. b.
$$f'(x) = x + \frac{4}{(x+3)^2} = \frac{x^3 + 6x^2 + 9x + 4}{(x+3)^2}$$

$$x^{3} + 6x^{2} + 9x + 4 = (x^{2} + 2x + 1)(x + e)$$

$$x^{3} + 6x^{2} + 9x + 4 = (x^{2} + 2x + 1)(x + e)$$

 $x^{3} + 6x^{2} + 9x + 4 = x^{3} + (e + 2)x^{2} + (2e + 1)x + e$
donc $e + 2 = 6$, $2e + 1 = 9$ et $e = 4$
donc $x^{3} + 6x^{2} + 9x + 4 = (x^{2} + 2x + 1)(x + 4)$

donc
$$e + 2 = 6$$
, $2e + 1 = 9$ et $e = 4$

donc
$$x^3 + 6x^2 + 9x + 4 = (x^2 + 2x + 1)(x + 4)$$

$$f'(x) = \frac{(x+1)^2 (x+4)}{(x+3)^2}$$

1. c. Un carré est toujours positif ou nul donc f'(x) a le même signe que x + 4, et s'annule pour x = -1

х	$-\infty$		- 4		- 3		- 1		$+\infty$
f'(x)		_	0	+		+	0	+	

1

d'où le sens de variation de f

Il suffit ensuite de déterminer les limites de f aux bornes du domaine de définition

$$f(x) = \frac{1}{2}x^2 - 2 - \frac{4}{x+3} \text{ or } \lim_{x \to \pm \infty} \frac{1}{2}x^2 - 2 = +\infty \text{ et } \lim_{x \to \pm \infty} \frac{4}{x+3} = 0 \text{ donc } \lim_{x \to \pm \infty} f(x) = +\infty$$

$$\lim_{x \to -3} \frac{1}{2}x^2 - 2 = \frac{5}{2} \text{ et } \lim_{x \to -3^+} \frac{4}{x+3} = +\infty \text{ donc } \lim_{x \to -3^+} f(x) = -\infty$$

$$\lim_{x \to -3} \frac{1}{2}x^2 - 2 = \frac{5}{2} \text{ et } \lim_{x \to -3^-} \frac{4}{x+3} = -\infty \text{ donc } \lim_{x \to -3^-} f(x) = +\infty$$

- 2. a P coupe l'axe des abscisses quand $\frac{1}{2}x^2 2 = 0$ soit si $x^2 = 4$ donc si x = 2 ou x = -2 donc P coupe l'axe des abscisses en deux points $A_1 (-2; 0)$ et $A_2 (2; 0)$.
- 2. b f est décroissante sur $]-\infty$; -4] et croissante sur [4;-3[donc f admet un minimum en -4; f(-4)=10 donc pour tout x de $]-\infty$; -3[, $f(x) \ge 10$ donc C ne coupe pas l'axe des abscisses sur $]-\infty$; -3[.

f est définie continue, strictement croissante sur]-3; $+\infty$ [, f(]-3; $+\infty$ [) =] $-\infty$; $+\infty$ [, donc $0 \in f(]-3$; $+\infty$ [) donc l'équation f(x) = 0 admet une seule solution α sur]-3; $+\infty$ [.

La courbe C coupe donc l'axe des abscisses en un seul point d'abscisse α sur]-3; $+\infty$ [.

f(2,34) < 0 et f(2,35) > 0 et l'équation f(x) = 0 admet une seule solution α sur]-3; $+\infty$ [donc f s'annule sur] 2,34; 2,35 [donc 2,34 $< \alpha < 2,35$

2. c.
$$f(x) - (\frac{1}{2}x^2 - 2) = -\frac{4}{x+3}$$
 donc si $x > -3$, $f(x) - (\frac{1}{2}x^2 - 2) < 0$ donc C est en dessous de P sur] -3 ; $+\infty$ [

si x < -3, $f(x) - (\frac{1}{2}x^2 - 2) > 0$ donc C est au dessus de P sur] $-\infty$; -3 [.

$$f(x) - (\frac{1}{2}x^2 - 2) = -\frac{4}{x+3}$$
 et $\lim_{x \to \pm \infty} \frac{4}{x+3} = 0$ donc $\lim_{x \to \pm \infty} f(x) - (\frac{1}{2}x^2 - 2) = 0$ donc P est asymptote à C en $+\infty$ et $-\infty$.

2. f.
$$f(x) - (\frac{1}{2}x^2 - 2) = -\frac{4}{x+3}$$
, on doit donc résoudre $-0.1 < -\frac{4}{x+3} < 0.1$ soit en multipliant par -1 , il suffit donc de résoudre

 $-0.1 < \frac{4}{x+3} < 0.1$. On ne peut travailler qu'avec des nombres de même signe donc deux cas :

Cas 1:
$$0 \le \frac{4}{x+3} < 0.1$$
 donc en passant aux inverses : $\frac{x+3}{4} > 10$ soit $x+3 > 40$ donc $x > 37$

Cas 2:
$$-0.1 < \frac{4}{x+3} < 0$$
 donc en passant aux inverses : $\frac{x+3}{4} < -10$ soit $x+3 < -40$ donc $x < -43$

Si $x \in]-\infty$; $-43 [\cup] 37$; $+\infty$ [, l'écart entre la courbe et la parabole est inférieur à 0,1.

