EXERCICE 1 (4 points)

On considère la suite numérique (u_n) définie sur \mathbb{N} par :

 $u_0 = a$, et, pour tout entier n, $u_{n+1} = u_n(2 - u_n)$ où a est un réel donné tel que 0 < a < 1.

- On suppose dans cette question que $a = \frac{1}{9}$. 1°
- a) Calculer u_1 et u_2 .
- b) Dans un repère orthonormal (unité graphique 8 cm), tracer, sur l'intervalle [0; 2], la droite d d'équation y = x et la courbe P représentative de la fonction $f: x \to x (2-x)$.
- Utiliser d, et P pour construire sur l'axe des abscisses les points A₁, A₂, A₃ d'abscisses respectives u₁, u₂ et u₃. c)
- 2° On suppose dans cette question que a est un réel quelconque de l'intervalle] 0 ; 1 [.
- a) Montrer par récurrence que, pour tout entier n, $0 < u_n < 1$.
- b) Montrer que la suite (u_n) est croissante.
- Que peut-on en déduire ? *c*)
- On suppose à nouveau dans cette question que $a = \frac{1}{8}$. On considère la suite numérique (v_n) définie sur \mathbb{N} par $v_n = 1 u_n$. 3°
- a) Exprimer, pour tout entier n, v_{n+1} en fonction de v_n .
- b) En déduire l'expression de v_n en fonction de n.
- c)Déterminer la limite de la suite (v_n) , puis celle de la suite (u_n) .

EXERCICE 2 (5 points)

Première partie

- On considère, dans l'ensemble des nombres complexes, l'équation suivante (E) : $z^3 + 2z^2 16 = 0$. 1° Montrer que 2 est solution de (E), puis que (E) peut s'écrire sous la forme $(z-2)(az^2 + bz + c) = 0$ où a, b et c sont trois réels que l'on déterminera.
- En déduire les solutions de l'équation (E) sous forme algébrique puis sous forme exponentielle.

Deuxième partie

Le plan complexe est muni du repère orthonormal direct (O, \vec{u} , \vec{v}).

- Placer les points A, B et D d'affixes respectives $z_A = -2 2i$, $z_B = 2$ et $z_D = -2 + 2i$.
- 2° Calculer l'affixe z_C du point C tel que ABCD soit un parallélogramme. Placer C.
- Soit E l'image du point C par la rotation de centre B et d'angle $-\frac{\pi}{2}$, et F l'image du point C par la rotation de centre D et

d'angle +
$$\frac{\pi}{2}$$
.

- Calculer les affixes des points E et F, notées z_E et z_E.
- b) Placer les points E et F.
- 4° a) Vérifier que $\frac{z_F z_A}{z_E z_A} = i$.
- En déduire la nature du triangle AEF. b)
- Soit I le milieu de [EF]. Déterminer l'image du triangle EBA par la rotation de centre I et d'angle $-\frac{\pi}{2}$. 5°

EXERCICE 2 (5 points) Spécialité

Les deux parties de cet exercice peuvent être traitées de façon indépendante.

Première partie

ABC est un triangle direct du plan orienté.

On désigne respectivement par I, J et K les milieux de [AB], [BC] et [CA].

Soit α un réel qui conduit à la réalisation de la figure jointe ci-jointe sur laquelle on raisonnera.

La figure sera jointe à la copie.

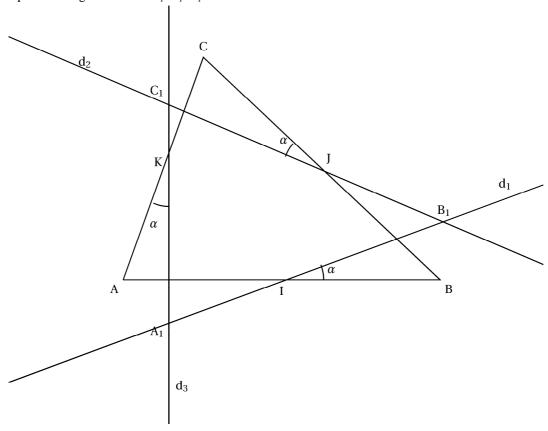
 d_1 est l'image de la droite (AB) par la rotation de centre I et d'angle α .

 d_2 est l'image de la droite (BC) par la rotation de centre J et d'angle α .

 d_3 est l'image de la droite (CA) par la rotation de centre K et d'angle α .

A₁ est le point d'intersection de d_1 et d_3 , B₁ celui de d_1 et d_2 , et C₁ celui de d_2 et d_3 .

- 1° On appelle H le point d'intersection de (BC) et d_1 . Montrer que les triangles H I B et H B $_1$ J sont semblables.
- 2° En déduire que les triangles ABC et A₁ B₁ C₁ sont semblables.



Deuxième partie

Le plan complexe est muni du repère orthonormal direct (O; \vec{u} , \vec{v}).

A - Construction de la figure

- 1° Placer les points A(-4-6i), B(14), C(-4+6i), $A_1(3-7i)$, $B_1(9+5i)$ et $C_1(-3-i)$.
- 2° Calculer les affixes des milieux I, J et K des segments [AB], [BC] et [CA]. Placer ces points sur la figure.
- 3° Montrer que A₁, I, B₁ sont alignés.

On admettra que B $_{1},$ J, C $_{1}$ $\underline{d^{\prime}}$ une part, et C $_{1},$ K, A $_{1}$ d'autre part sont alignés.

 4° Déterminer une mesure en radians de l'angle (\overrightarrow{IB} , \overrightarrow{IB}_{1}).

On admettra que $(\overrightarrow{KA}, \overrightarrow{KA}_1) = \frac{\pi}{4} \ et \ (\overrightarrow{JC}, \overrightarrow{JC}_1) = \frac{\pi}{4} \ .$

- 5° Quelle est l'image de la droite (AB) par la rotation de centre I et d'angle $\frac{\pi}{4}$?
- B Recherche d'une similitude directe s transformant ABC en A₁ B₁ C₁.

On admet qu'il existe une similitude directe s transformant les points A, B et C respectivement en A₁, B₁ et C₁.

1° Montrer que l'écriture complexe de s est $z' = \left(\frac{1}{2} + \frac{1}{2}i\right)z + 2 - 2i$, où z et z' désignent respectivement les affixes d'un point et

de son image par s.

- 2° a) Déterminer le rapport et l'angle de s.
- b) Déterminer l'affixe du centre Ω de s.
- 3° Que représente le point Ω pour le triangle ABC ?

PROBLEME (11 points)

On considère la fonction numérique f définie sur \mathbb{R} par $f(x) = x^2 e^{x-1} - \frac{x^2}{2}$.

Le graphique ci-dessous est la courbe représentative de cette fonction telle que l'affiche une calculatrice dans un repère orthonormal.

Conjectures

A l'observation de cette courbe, quelles conjectures pensez-vous pouvoir faire concernant

- a) le sens de variation de f sur [-3; 2]?
- b) la position de la courbe par rapport à l'axe (x 'x)?

Dans la suite de ce problème, on se propose de valider ou non ces conjectures et de les compléter.

Calculer f'(x) pour tout réel x, et l'exprimer à l'aide de l'expression g(x) où g est la fonction définie sur \mathbb{R} par :

$$g(x) = (x+2) e^{x-1} - 1$$
.

- 2° Etude du signe de g(x) pour x réel.
- a) Calculer les limites de g(x) quand x tend vers $+\infty$ puis quand x tend vers $-\infty$.
- b) Calculer g'(x) et étudier son signe suivant les valeurs de x.
- c) En déduire le sens de variation de la fonction g, puis dresser son tableau de variation.
- d) Montrer que l'équation g(x) = 0 possède une unique solution dans \mathbb{R} . On note α cette solution.

Montrer que $0.20 < \alpha < 0.21$.

- e) Déterminer le signe de g(x) suivant les valeurs de x.
- 3° Sens de variation de la fonction f sur \mathbb{R} .
- a) Etudier, suivant les valeurs de x, le signe de f'(x).
- b) En déduire le sens de variation de la fonction f
- c) Que pensez-vous de votre première conjecture ?

Partie B : Contrôle de la deuxième conjecture.

On note C la courbe représentative de la fonction f dans un repère orthogonal (O; \vec{i} , \vec{j}). On se propose de contrôler la position de la courbe par rapport à l'axe (x'x).

$$1^{\circ}$$
 Montrer que $f(\alpha) = \frac{-\alpha^3}{2(\alpha+2)}$.

- 2° On considère la fonction h définie sur l'intervalle [0;1] par $h(x) = \frac{-x^3}{2(x+2)}$
- a) Calculer h'(x) pour $x \in [0; 1]$, puis déterminer le sens de variation de h sur [0; 1].
- b) En déduire un encadrement de $f(\alpha)$.
- $3^{\circ} a$) Déterminer les abscisses des points d'intersection de la courbe C avec l'axe (x ' x).
- b) Préciser alors la position de la courbe C par rapport à l'axe des abscisses.
- c) Que pensez-vous de votre deuxième conjecture?

Partie C : Tracé de la courbe.

Compte tenu des résultats précédents, on se propose de tracer la partie Γ de C correspondant à l'intervalle [-0,2;0,4], dans le repère orthogonal $(O;\vec{i},\vec{j})$ avec les unités suivantes :

Sur l'axe (x ' x): 1 cm représentera 0,05

Sur l'axe (y 'y): 1 cm représentera 0,001

1° Recopier le tableau suivant et compléter celui-ci à l'aide de la calculatrice en indiquant les valeurs approchées sous la forme n. 10^{-4} (n entier relatif).

х	-0,20	-0,15	-0.10	-0,05	0	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40
f(x)													

2° - Tracer alors Γ dans le repère choisi.

Partie D: Calcul d'aire.

On désire maintenant calculer l'aire du domaine D fermé délimité par la courbe Γ , l'axe des abscisses, l'axe des ordonnées et la droite d'équation $x = 1 - \ln(2)$.

- 1° A l'aide d'une double intégration par parties, déterminer une primitive sur \mathbb{R} de la fonction $x \to x^2 e^x$.
- 2° En déduire une primitive F sur \mathbb{R} de la fonction f.
- 3° Calculer alors, en unités d'aire, l'aire du domaine D puis en donner une valeur approchée en cm².

CORRECTION

EXERCICE 1 (4 points)

1° a.
$$u_1 = u_0(2 - u_0) = \frac{15}{64}$$
 donc $u_2 = u_1(2 - u_1) = \frac{15}{64} \left(2 - \frac{15}{64} \right) = \frac{1695}{4096}$

 $2^{\circ} a$. 0 < a < 1 donc la propriété est vraie pour n = 0

Montrons que pour tout n de \mathbb{N} , si la propriété vraie pour un rang n, alors elle est vraie au rang n + 1.

$$u_{n+1} = 2 u_n - u_n^2$$
 donc $u_{n+1} = 1 - (1 - 2 u_n + u_n^2)$ soit $u_{n+1} = 1 - (1 - u_n)^2$ $0 < u_n < 1$ donc $0 < 1 - u_n < 1$ donc $0 < (1 - u_n)^2 < 1$ donc $0 < (1 - u_n$

On aurait pu démontrer cette propriété en utilisant la fonction $f: f(x) = 2x - x^2$ f est **strictement** croissante sur [0; 1] donc si $0 < u_n < 1$ alors $f(0) < f(u_n) < f(1)$ soit $0 < u_{n+1} < 1$ d'où la conclusion.

b.
$$u_{n+1} - u_n = u_n (2 - u_n) - u_n = u_n (1 - u_n)$$

 $0 < u_n < 1 \text{ donc } 0 < 1 - u_n < 1 \text{ donc } u_{n+1} - u_n > 0$, la suite (u_n) est croissante.

c. La suite (u_n) est croissante et majorée par 1 donc est convergente.

$$3^{\circ} a$$
. $v_{n+1} = 1 - u_{n+1} = 1 - 2 u_n + u_n^2$ donc $v_{n+1} = (1 - u_n)^2 = v_n^2$

b)
$$v_1 = v_0^2$$
; $v_2 = v_1^2 = (v_0^2)^2 = v_0^{2 \times 2}$
 $v_3 = v_2^2 = (v_0^{2 \times 2})^2 = v_0^{2 \times 2 \times 2}$

Soit la propriété : pour tout n de \mathbb{N} , $v_n = (v_0)^{2^n}$

La propriété est vraie pour n = 0

Montrons que pour tout n de \mathbb{N} , si la propriété vraie pour un rang n, alors elle est vraie au rang n + 1.

$$v_{n+1} = v_n^2 = \left[(v_0)^{2^n} \right]^2 = (v_0)^{2^n \times 2} \text{ donc } v_{n+1} = (v_0)^{2^{n+1}}$$

La propriété est vraie au rang n + 1 donc pour tout n de \mathbb{N} .

c)
$$0 < v_0 < 1$$
 et $\lim_{n \to +\infty} 2^n = +\infty$ donc $\lim_{n \to +\infty} v_n = 0$ or $u_n = 1 - v_n$ donc $\lim_{n \to +\infty} u_n = 1$

EXERCICE 2

Première partie

$$\begin{array}{ll} 1^{\circ} & 2^{3} + 2 \times (2^{2}) - 16 = 8 + 8 - 16 = 0 \text{ donc } 2 \text{ est solution de (E)}. \\ (z - 2) & (az^{2} + bz + c) = az^{3} + (-2a + b)z^{2} + (-2b + c)z - 2c \\ \text{donc par identification des coefficients des termes de même degré: } a = 1; -2a + b = 2; -2b + c = 0 \text{ et } -2c = -16 \\ \text{donc } a = 1; b = 4 \text{ et } c = 8 \\ z^{3} + 2z^{2} - 16 = (z - 2)(z^{2} + 4z + 8) \end{array}$$

2°
$$z^3 + 2z^2 - 16 = 0 \Leftrightarrow (z - 2)(z^2 + 4z + 8) = 0 \Leftrightarrow z - 2 = 0 \text{ ou } z^2 + 4z + 8 = 0$$

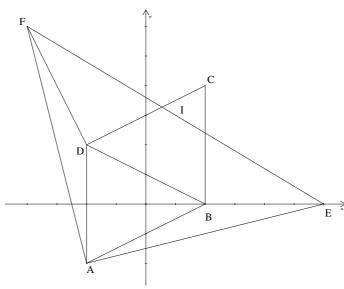
 $\Delta = 16 - 4 \times 8 = -16 = (4 \text{ i}) \text{ donc } z_1 = -2 + 2 \text{ i et } z_2 = -2 - 2 \text{ i}$
 $z^3 + 2z^2 - 16 = 0 \text{ a pour solutions} : z_0 = 2; z_1 = -2 + 2 \text{ i et } z_2 = -2 - 2 \text{ i}$
 $|-2 + 2 \text{ i}|^2 = 4 + 4 \text{ donc } |-2 + 2 \text{ i}| = 2\sqrt{2}$

$$z_1 = -2 + 2i = 2\sqrt{2} (\cos \theta + i \sin \theta) \operatorname{donc} \cos \theta = -\frac{1}{\sqrt{2}} \operatorname{et} \sin \theta = \frac{1}{\sqrt{2}} \operatorname{donc} \theta = \frac{3\pi}{4} + 2k\pi$$

$$z_1 = 2\sqrt{2} e^{i\frac{3\pi}{4}} \text{ donc } z_2 = \overline{z_1} = 2\sqrt{2} e^{-i\frac{3\pi}{4}}$$

Deuxième partie

Figure:



ABCD est un parallélogramme si et seulement si : $\overrightarrow{DC} = \overrightarrow{AB}$ donc $z_C - z_D = z_B - z_A$ soit $z_C = z_D + z_B - z_A$ donc $z_C = -2 + 2i + 2 + 2 + 2i = 2 + 4i$

3° a. La rotation de centre B et d'angle $-\frac{\pi}{2}$, transforme C en E tel que : $z_E - z_B = e^{-i\frac{\pi}{2}}$ ($z_C - z_B$) soit $z_E = -i$ ($z_C - z_B$) + z_B donc $z_E = -i(2 + 4i - 2) + 2$ donc $z_E = 6$

La rotation de centre D et d'angle $\frac{\pi}{2}$, transforme C en F tel que : $z_F - z_D = e^{i\frac{\pi}{2}} (z_C - z_D)$ soit $z_F = i (z_C - z_D) + z_D$ donc $z_F = i(2 + 4i + 2 - 2i) - 2 + 2i$. donc $z_F = -4 + 6i$.

4° a)
$$z_F - z_A = -4 + 6i - (-2 - 2i) = -2 + 8i$$
 et i $(z_E - z_A) = i(6 - (-2 - 2i)) = i(8 + 2i) = -2 + 8i$ donc $\frac{z_F - z_A}{z_E - z_A} = i$.

b)
$$z_F - z_A = i (z_E - z_A) \text{ or } |i| = 1 \text{ donc } |z_F - z_A| = |z_E - z_A| \text{ donc } AF = AE$$

$$\arg i = \frac{\pi}{2} + 2 k \pi \text{ donc } \arg \frac{z_F - z_A}{z_E - z_A} = \frac{\pi}{2} + 2 k \pi \text{ donc } (\overrightarrow{AE}, \overrightarrow{AF}) = \frac{\pi}{2} + 2 k \pi$$

Le triangle AEF est donc direct, rectangle, isocèle en A.

I a pour affixe : $z_I = \frac{1}{2}(z_E + z_F) = 1 + 3$ i donc la rotation de centre I et d'angle $-\frac{\pi}{2}$, transforme le point M d'affixe z en le

point M' d'affixe z' avec : $z' - z_1 = e^{-i\frac{\pi}{2}}(z - z_1)$ soit $z' = -i(z - z_1) + z_1$ donc z' = -i(z - 1 - 3i) + 1 + 3i soit z' = -iz - 2 + 4i $z'_A = -iz_A - 2 + 4i = -i(-2 - 2i) - 2 + 4i = -4 + 6i = z_F$ $z'_B = -iz_B - 2 + 4i = -2i - 2 + 4i = -2 + 2i = z_D$ $z'_E = -iz_E - 2 + 4i = -6i - 2 + 4i = -2 - 2i = z_A$

Le triangle ABE est transformé par la rotation de centre I et d'angle $-\frac{\pi}{2}$, en le triangle ADF.

EXERCICE 2 (5 points) Spécialité

1° H est le point d'intersection des droites d_1 et (BC) donc les angles \widehat{JHB}_1 et \widehat{IHB} sont opposés par le sommet donc ont la même mesure

 d_2 est l'image de (BC) par la rotation de centre J d'angle α donc l'angle $\widehat{CJC_1}$ a pour mesure α , les angles $\widehat{CJC_1}$ et $\widehat{HJB_1}$ sont opposés par le sommet donc ont la même mesure donc $\widehat{HJB_1} = \widehat{HJB}$

Les triangles H I B et H B $_1$ J ont deux angles égaux deux à deux : $\widehat{JHB}_1 = \widehat{IHB}$ et $\widehat{HJB}_1 = \widehat{HJB}$, donc sont semblables.

2° Soit L le point d'intersection de d_2 et (AC)

On démontre de même que les triangles CJL et KLC $_1$ sont semblables donc que les angles $\widehat{KC}_1\widehat{L}$ et \widehat{LCJ} ont la même mesure, soit encore $\widehat{A}_1\widehat{C}_1\widehat{B}_1=\widehat{ACB}$

Les triangles H I B et H B $_1$ J sont semblables donc les angles $\widehat{HB_1J}$ et \widehat{HBI} ont la même mesure soit encore : $\widehat{A_1B_1C_1}=\widehat{ABC}$. Les triangles ABC et $A_1B_1C_1$ ont deux angles égaux deux à deux : $\widehat{A_1B_1C_1}=\widehat{ABC}$ et $\widehat{A_1C_1B_1}=\widehat{ACB}$ donc sont semblables.

Deuxième partie

A - 2° I a pour affixe
$$z_1 = \frac{1}{2}(z_A + z_B) = 5 - 3i$$
; J a pour affixe $z_3 = \frac{1}{2}(z_B + z_C) = 5 + 3i$; K a pour affixe $z_K = \frac{1}{2}(z_A + z_C) = -4$
3° $\overrightarrow{IA_1}$ a pour affixe : $3 - 7i - (5 - 3i) = -2 - 4i$; $\overrightarrow{IB_1}$ a pour affixe : $9 + 5i - (5 - 3i) = 4 + 8i$ donc $\overrightarrow{IB_1} = -2\overrightarrow{IA_1}$ donc $\overrightarrow{A_1}$, I, $\overrightarrow{B_1}$ sont alignés.

4°
$$\overrightarrow{IB}$$
 a pour affixe: $14 - (5 - 3i) = 9 + 3i$; donc $\frac{z_{B_1} - z_1}{z_B - z_1} = \frac{4 + 8i}{9 + 3i} = \frac{4}{3} \times \frac{(1 + 2i)(3 - i)}{(3 + i)(3 - i)}$

$$\frac{z_{B_1} - z_I}{z_{B} - z_I} = \frac{4}{3} \times \frac{3 - i + 6i + 2}{10} = \frac{2}{3} (1 + i),$$

1+i est un complexe de module $\sqrt{2}$ et d'argument θ tel que : $\sqrt{2}$ ($\cos \theta + i \sin \theta$) = 1+i

$$\operatorname{donc} \cos \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \operatorname{et} \sin \theta = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \operatorname{donc} \theta = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} \operatorname{arg} \frac{z_{B_1} - z_I}{z_{B} - z_I} = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \operatorname{donc} (\overrightarrow{IB}, x_{B}) = \frac{\pi}{4} + 2$$

$$\overrightarrow{\mathrm{IB}_{1}}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z})$$

5° La rotation de centre I d'angle
$$\frac{\pi}{4}$$
 transforme I en I et B en B' tel que IB = IB' et $(\overrightarrow{IB}, \overrightarrow{IB'}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z})$

or
$$(\overrightarrow{\text{IB}}, \overrightarrow{\text{IB}_1}) = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z}) \text{ donc } (\overrightarrow{\text{IB}'}, \overrightarrow{\text{IB}_1}) = 0 + 2 k \pi (k \in \mathbb{Z}) \text{ donc B' appartient à la droite } (\text{IB}_1) = d_1$$

Une rotation r transforme une droite (MN) (M \neq N) en la droite (r(M) r(N)) donc la rotation de centre I d'angle $\frac{\pi}{4}$ transforme la droite (AB) = (IB) en la droite (IB') = d_1

B Recherche d'une similitude directe transformant ABC en A₁ B₁ C₁.

1° s est une similitude directe donc l'écriture complexe de s est z' = az + b

$$s(A) = A_1 \text{ donc } 3 - 7 \text{ i} = a (-4 - 6 \text{ i}) + b$$

$$s(C) = C_1 \operatorname{donc} - 3 - i = a(-4 + 6i) + b$$

donc par différence terme à terme :
$$6 - 6i = -12i a$$
 soit i $(6 - 6i) = 12 a$ donc $a = \left(\frac{1}{2} + \frac{1}{2}i\right)$

en remplaçant :
$$b = 3 - 7$$
 i $-\left(\frac{1}{2} + \frac{1}{2}$ i $\right)$ ($-4 - 6$ i) donc $b = 2 - 2$ i. L'écriture complexe de s est $z' = \left(\frac{1}{2} + \frac{1}{2}$ i $\right)$ $z + 2 - 2$ i

(ce qui suit n'est pas demandé)

On vérifie que si z = 14 alors z' = 9 + 5 i donc que s est une similitude directe transformant ABC en A₁ B₁ C₁.

$$2^{\circ} a$$
) $|a| = \frac{\sqrt{2}}{2}$ et arg $a = \frac{\pi}{4} + 2 k \pi (k \in \mathbb{Z})$ donc s est une similitude directe de rapport $\frac{\sqrt{2}}{2}$ et d'angle $\frac{\pi}{4}$.

b) Ω est le point invariant par s donc son affixe vérifie :
$$z = \left(\frac{1}{2} + \frac{1}{2}i\right)z + 2 - 2i$$
 soit $2z = (1+i)z + 4 - 4i$ soit $(1-i)z = 4 - 4i$

donc z = 4 donc Ω a pour affixe 4

$$3^{\circ}$$
 $\Omega A = |-4-6 \ i-4| = 10$; et $\Omega B = |14-4| = 10$ et $\Omega C = |-4+6 \ i-4| = 10$ donc Ω est le centre du cercle circonscrit au triangle ABC.

PROBLEME

Conjectures

- f semble être croissante sur [-3; 2].
- La courbe de f semble être en dessous de l'axe des abscisses sur [-3;0] et au-dessus sur [0;2]

Partie A : Contrôle de la première conjecture.

$$1^{\circ} \qquad f(x) = x^{2} e^{x-1} - \frac{x^{2}}{2} \operatorname{donc} f'(x) = 2 x e^{x-1} + x^{2} e^{x-1} - \frac{1}{2} \times 2 x \operatorname{soit} f'(x) = x (2+x) e^{x-1} - x = x g(x)$$

$$2^{\circ} a$$
. $\lim_{x \to +\infty} e^{x-1} = +\infty$ et $\lim_{x \to +\infty} x + 2 = +\infty$ donc $\lim_{x \to +\infty} g(x) = +\infty$

2° a.
$$\lim_{x \to +\infty} e^{x-1} = +\infty$$
 et $\lim_{x \to +\infty} x + 2 = +\infty$ donc $\lim_{x \to +\infty} g(x) = +\infty$
 $g(x) = x e^{x-1} + 2 e^{x-1} - 1$ or $\lim_{x \to -\infty} x e^x = 0$ et $\lim_{x \to -\infty} e^{x-1} = 0$ donc $\lim_{x \to -\infty} g(x) = -1$

b)
$$g'(x) = (x+3) e^{x-1}$$

La fonction exponentielle est strictement positive sur \mathbb{R} , $x + 3 > 0 \Leftrightarrow x > -3$ d'où le signe de g'(x): si x < -3, g'(x) < 0; si x = -3, g'(x) = 0; si x > -3, g'(x) > 0

c)

х	- ∞	- 3	+∞
g'(x)	_	0	+
g	-1		+∞
		$-e^{-4}-1$	

lim g(x) = -1 et g est strictement décroissante sur $]-\infty;-3]$ donc g ne s'annule pas sur $]-\infty;-3]$. d)

g est définie continue strictement croissante sur $[-3; +\infty[; g([-3; +\infty[) = [-e^{-4} - 1; +\infty[; 0 \in [-e^{-4} - 1; +\infty[$ donc l'équation g(x) = 0 admet une seule solution $\alpha \operatorname{sur} [-3; +\infty[$.

g est strictement croissante sur $[-3; +\infty [$ et g(0,20) < 0 et g(0,21) > 0 donc $0,20 < \alpha < 0,21$

g est strictement croissante sur $[-3; +\infty [$ et $g(\alpha) = 0$ donc si $-3 \le x < \alpha$ alors g(x) < 0; si $x = \alpha$ alors g(x) = 0; si $x > \alpha$ alors g(x) > 0

	х	- ∞	α	+∞
ſ	g(x)	_	0	+

 $3^{\circ} a$. f'(x) = x g(x) donc

х	- ∞	0		α	+∞
g(x)	_		-	0	+
х	_	0	+		+
f'(x)	+	0	_	0	+

- sur] $-\infty$; 0], f est croissante, sur $[0; \alpha]$, f est décroissante, sur $[\alpha; +\infty[$, f est décroissante. b)
- On avait supposé f être strictement croissante sur \mathbb{R} , or f est décroissante sur $[0; \alpha]$, donc la première conjecture est fausse. c)

Partie B : Contrôle de la deuxième conjecture.

1°
$$\alpha$$
 est solution de $g(x) = 0$ donc $(\alpha + 2)$ e $\alpha^{-1} - 1 = 0$, et $0, 2 < \alpha$ donc $\alpha + 2 \neq 0$ et $\alpha^{-1} = \frac{1}{\alpha + 2}$

$$f(\alpha) = \alpha^{2} e^{\alpha - 1} - \frac{1}{2} \alpha^{2} \operatorname{soit} f(\alpha) = \alpha^{2} \frac{1}{\alpha + 2} - \frac{1}{2} \alpha^{2} = \alpha^{2} \left(\frac{1}{\alpha + 2} - \frac{1}{2} \right) = \alpha^{2} \frac{2 - (\alpha + 2)}{2(\alpha + 2)} \operatorname{donc} f(\alpha) = \frac{-\alpha^{3}}{2(\alpha + 2)}$$

2° a)
$$h(x) = \frac{-x^3}{2(x+2)} = -\frac{1}{2} \frac{x^3}{(x+2)}$$
 soit $u(x) = x^3$ et $v(x) = x+2$ alors $h'(x) = -\frac{1}{2} \frac{3x^2(x+2) - x^3}{(x+2)^2}$

$$h'(x) = -\frac{1}{2} \frac{x^2 \left[3(x+2) - x \right]}{(x+2)^2} = -\frac{1}{2} \frac{x^2 (2x+6)}{(x+2)^2} \text{ soit } h'(x) = -\frac{x^2 (x+3)}{(x+2)^2}$$

sur] 0; 1]
$$\frac{x^2(x+3)}{(x+2)^2} > 0$$
 donc $h'(x) < 0$ et $h'(0) = 0$ donc h est strictement décroissante sur [0; 1].

h est strictement décroissante sur [0;1] donc comme $0.20 < \alpha < 0.21$ alors $h(0.20) > h(\alpha) > h(0.21)$ or $h(\alpha) = f(\alpha) \text{ donc} - 0.0021 < h(0.21) < f(\alpha) < h(0.20) < -0.0018 \text{ soit} -0.0021 < f(\alpha) < -0.0018$

3° a)
$$f(x) = x^2 e^{x-1} - \frac{x^2}{2} = x^2 (e^{x-1} - \frac{1}{2})$$

$$f(x) = 0 \Leftrightarrow x^2 \left(e^{x-1} - \frac{1}{2}\right) = 0 \Leftrightarrow x = 0 \text{ ou } e^{x-1} - \frac{1}{2} = 0 \Leftrightarrow x = 0 \text{ ou } x - 1 = \ln\left(\frac{1}{2}\right) = -\ln 2 \Leftrightarrow x = 0 \text{ ou } x = 1 - \ln 2$$

b)

х	- ∞	0		1 – ln 2	+∞
x^2	+	0	+		+
$e^{x-1}-\frac{1}{2}$	_		_	0	+
f(x)	-	0	_	0	+

donc f est en-dessous de l'axe des abscisses sur $]-\infty$; $1-\ln 2]$ et au-dessus sur $[1-\ln 2; +\infty[$.

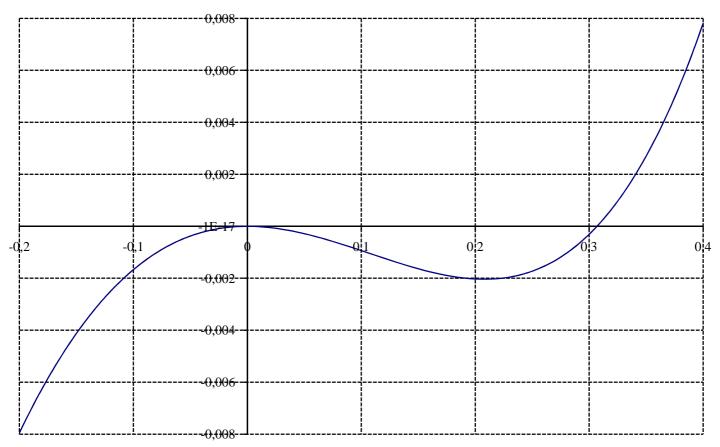
 $1 - \ln 2 > 0$ donc la deuxième conjecture est fausse.

Partie C: Tracé de la courbe.

Ī	х	- 0,20	- 0,15	-0,10	- 0,05	0	0,05
ĺ	f(x)	-80.10^{-4}	-41.10^{-4}	$-17. 10^{-4}$	-4.10^{-4}	0.10^{-4}	-3.10^{-4}

x	0,10	0,15	0,20	0,25	0,30	0,35	0,40
f(x)	-9.10^{-4}	-16.10^{-4}	-20.10^{-4}	-17.10^{-4}	-3.10^{-4}	$27.\ 10^{-4}$	$78.\ 10^{-4}$

2°-



Partie D: Calcul d'aire.

La fonction $t \to t^2$ e '.est continue sur R donc G est la primitive nulle en 0 de la fonction $t \to t^2$ e '.

$$v'(t) = e^{t}$$
 $v(t) = e^{t}$ donc $G(x) = \begin{bmatrix} t^{2} e^{t} \end{bmatrix}_{0}^{x} - 2 \int_{0}^{x} t e^{t} dt = x^{2} e^{x} - 2 \int_{0}^{x} t e^{t} dt$

$$u(t) = t \qquad \qquad u'(t) = 1$$

$$v'(t) = e^{t}$$
 $v(t) = e^{t}$

$$\int_0^x t \, e^t \, dt = \left[t \, e^t \, \right]_0^x - \int_0^x e^t \, dt \, donc \, \int_0^x t \, e^t \, dt = x \, e^x - \left[e^t \, \right]_0^x = x \, e^x - (e^x - 1) = (x - 1) \, e^x + 1$$

donc
$$G(r) = r^2 e^x - 2[(r-1)e^x + 1]$$
 soit $G(r) = (r^2 - 2r + 2)e^x - 2$

donc $G(x) = x^2 e^x - 2[(x-1)e^x + 1]$ soit $G(x) = (x^2 - 2x + 2)e^x - 2$ Une primitive est connue à une constante près donc la fonction $x \to (x^2 - 2x + 2)e^x$ est une primitive de la fonction $x \to x^2 e^x$.

$$2^{\circ} \qquad f(x) = x^{2} e^{x-1} - \frac{x^{2}}{2} = x^{2} e^{x} e^{-1} - \frac{1}{2} x^{2} \text{ donc } F(x) = (x^{2} - 2x + 2) e^{x} e^{-1} - \frac{1}{6} x^{3}$$
$$F(x) = [(x-1)^{2} + 1] e^{x-1} - \frac{1}{6} x^{3}$$

3° fest négative sur [0; 1 – ln 2] donc A =
$$\int_0^{1-\ln 2} -f(t) dt = -F(1-\ln 2) + F(0)$$

$$A = -\left[\left(\ln 2 \right)^{2} + 1 \right] \, e^{-\ln 2} + \frac{1}{6} \left(1 - \ln 2 \right)^{3} + e^{-1}$$

$$A = -\frac{1}{2} \left[(\ln 2)^2 + 1 \right] + \frac{1}{6} (1 - \ln 2)^3 + e^{-1}$$

A est exprimé en unités d'aires.

or sur l'axe $(x \cdot x)$: 1 cm représentera 0,05 donc 1 unité correspond à 20 cm et sur l'axe $(y \cdot y)$: 1 cm représentera 0,001 donc 1 unité correspond à 1000 cm donc 1 unité d'aire correspond à 20 000 cm²

A =
$$\left[-\frac{1}{2} \left[(\ln 2)^2 + 1 \right] + \frac{1}{6} (1 - \ln 2)^3 + e^{-1} \right] \times 20\ 000 \approx 7\ cm^2$$