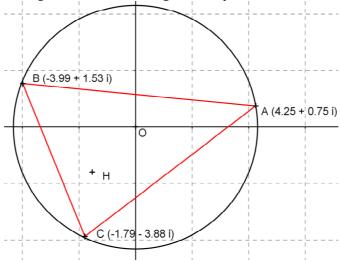
Soient A, B et C trois points non alignés, on note O le centre du cercle circonscrit au triangle ABC.

Dans un repère orthonormé direct $(O; \vec{u}, \vec{v})$, on désigne par a, b et c les affixes respectives des points A, B et C.

- 1. Montrer que l'on peut écrire : $a = r e^{i\theta_A}$, $b = r e^{i\theta_B}$, $c = r e^{i\theta_C}$, où r est un réel strictement positif et θ_A , θ_B et θ_C sont des réels.
- 2. On a alors construit, à partir du logiciel GeoGebra, une figure correspondant aux données de l'exercice :



- a. Reproduire, sur ce logiciel, une figure semblable à celle ci-dessus.
- b. Construire le point H d'affixe h définie par h = a + b + c
- c. Placer les points d'affixes : $\frac{h-a}{b-c}$; $\frac{h-b}{a-c}$ et $\frac{h-c}{a-b}$. Que remarque-t-on lorsque l'on déplace les points A ou B ou C?
- d. Quelle conjecture est-il alors légitime de faire sur les droites (AH), (BH) et (CH).
- e. Placer le point G d'affixe $g = \frac{h}{3}$.
- f. En déduire une conjecture sur les points O, G et H.
- 3. Montrer que les nombres complexes $\frac{z-a}{b-c}$; $\frac{z-b}{a-c}$ et $\frac{z-c}{a-b}$ sont imaginaires purs. En déduire la nature du point H
- 4. Montrer que les points O, G et H sont alignés et indiquer la position relative de ces trois points.

CORRECTION

1. O le centre du cercle circonscrit au triangle ABC donc OA = OB = OC

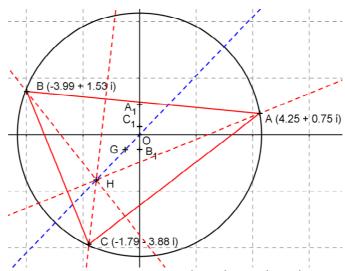
Soit r = OA, r > 0 (les points A, B et C sont non alignés).

Soit $\theta_A = (\vec{u}, \overrightarrow{OA})$, la forme trigonométrique de a, affixe de A, est alors $a = r e^{i\theta_A}$

 $r={
m OB},~{
m soit}~\theta_{\rm B}=(\stackrel{\rightarrow}{u},\stackrel{\rightarrow}{{
m OB}})$, la forme trigonométrique de b, affixe de B, est alors b=r e $^{{
m i}~\theta_{\rm B}}$

r = OC, soit $\theta_C = (\vec{u}, \overrightarrow{OC})$, la forme trigonométrique de c, affixe de C, est alors $c = r e^{i\theta_C}$

2. *a*.



c. Lorsque l'on déplace les points A ou B ou C, les points A $_1\left(\frac{h-a}{b-c}\right)$, B $_1\left(\frac{h-b}{a-c}\right)$ et C $_1\left(\frac{h-c}{a-b}\right)$ se déplacent sur l'axe des imaginaires.

d. Si A₁ appartient à l'axe des imaginaires, alors $\frac{h-a}{b-c}$ est un imaginaire pur donc $\arg\left(\frac{h-a}{b-c}\right) = \frac{\pi}{2}$ ou $-\frac{\pi}{2}$ à 2 π près donc

 $(\overrightarrow{CB}, \overrightarrow{AH}) = \frac{\pi}{2}$ ou $-\frac{\pi}{2}$ à 2π près donc les droites (BC) et (AH) sont perpendiculaires.

(AH) est la hauteur issue de A du triangle ABC.

De même on peut supposer que (BH) est la hauteur issue de B du triangle ABC et que (CH) est la hauteur issue de C du triangle ABC.

f. Apparemment les points O, G et H sont alignés.

3.
$$h = a + b + c = r e^{i\theta_A} + r e^{i\theta_B} + r e^{i\theta_C}$$

donc $h - a = r \left(e^{i\theta_B} + r e^{i\theta_C} \right)$

$$\frac{h-a}{b-c} = \frac{r\left(e^{i\theta_B} + e^{i\theta_C}\right)}{r\left(e^{i\theta_B} - e^{i\theta_C}\right)} = \frac{e^{i\theta_B} + e^{i\theta_C}}{e^{i\theta_B} - e^{i\theta_C}} = \frac{e^{\frac{i(\theta_B + \theta_C)}{2}}\left(e^{\frac{i(\theta_B - \theta_C)}{2}} + e^{\frac{i(\theta_B + \theta_C)}{2}}\right)}{e^{\frac{i(\theta_B + \theta_C)}{2}}\left(e^{\frac{i(\theta_B - \theta_C)}{2}} - e^{\frac{i(\theta_B + \theta_C)}{2}}\right)}$$

$$\frac{h-a}{b-c} = \frac{e^{\frac{i(\theta_B - \theta_C)}{2} + e^{\frac{-i(\theta_B - \theta_C)}{2}}}{e^{\frac{i(\theta_B - \theta_C)}{2} - e^{\frac{-i(\theta_B - \theta_C)}{2}}}} = \frac{2\cos\frac{\theta_B - \theta_C}{2}}{2i\sin\frac{\theta_B - \theta_C}{2}}$$

$$\frac{h-a}{b-c} = -i \frac{\cos \frac{\theta_B - \theta_C}{2}}{\sin \frac{\theta_B - \theta_C}{2}} \text{ donc } \frac{h-a}{b-c} \text{ est un imaginaire pur}$$

de même
$$\frac{h-b}{a-c} = -i \frac{\cos \frac{\theta_A - \theta_C}{2}}{\sin \frac{\theta_A - \theta_C}{2}}$$
 et $\frac{h-c}{a-b} = -i \frac{\cos \frac{\theta_A - \theta_B}{2}}{\sin \frac{\theta_A - \theta_B}{2}}$

Les nombres complexes $\frac{h-a}{b-c}$; $\frac{h-b}{a-c}$ et $\frac{h-c}{a-b}$ sont imaginaires purs.

 $\frac{h-a}{b-c} \text{ est un imaginaire pur donc } \arg\left(\frac{h-a}{b-c}\right) = \frac{\pi}{2} \text{ ou} - \frac{\pi}{2} \text{ à 2 π près donc } (\overrightarrow{CB}, \overrightarrow{AH}) = \frac{\pi}{2} \text{ ou} - \frac{\pi}{2} \text{ à 2 π près donc les droites}$

(BC) et (AH) sont perpendiculaires.

(AH) est la hauteur issue de A du triangle ABC.

De même (BH) est la hauteur issue de B du triangle ABC donc le point H, intersection de (AH) et (BH), est l'orthocentre du triangle ABC.

4.
$$g = \frac{a+b+c}{3}$$
 donc le point G est le centre de gravité du triangle ABC.

 $g = \frac{h}{3}$ donc h = 3 g donc $\overrightarrow{OH} = 3$ \overrightarrow{OG} , les points O, G et H sont alignés et G est au tiers à partir de O sur le segment [OH].

Dans un triangle ABC, le centre de gravité G, le centre du cercle circonscrit O et l'orthocentre H de ce triangle sont alignés et $\overrightarrow{OH} = 3 \overrightarrow{OG}$.