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Primitives     
 
Définition  
Soit f une fonction définie sur un intervalle I; on appelle primitive  de f sur I toute fonction F définie sur I telle que F' = f .  
 
Propriété  
Toute fonction définie et continue sur un intervalle I admet des primitives sur I.  
 
Propriété  
Soit f une fonction définie et continue sur un intervalle I, F une primitive de f sur I. 
Toute primitive G de f sur I est de la forme : G(x) = F(x) + k avec k un nombre réel. 
 
Primitives de fonctions usuelles  
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Propriétés : Si f et g sont deux fonction admettant sur I des primitives 
Somme : Une primitive de la somme des deux fonctions f et g est la somme d'une primitive de f et d'une primitive de g 
Multiplication par un réel :  la primitive du produit d'une fonction f par un réel λ est le produit d'une primitive F de cette fonction par 
ce réel λ 
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on peut aussi utiliser les exposants fractionnaires : f = u' 
1

2u
−

 donc F = 
1

1
2

1
1

1
2

u
− +

− +
 = 2 

1

2u  donc F = 2 u . 

Primitives d'une fonction exponentielle. f = u' e u donc F = e u 

Primitives de l'inverse d'une fonction f = 
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Primitives d'une fonction trigonométrique :  f = u' sin u donc F = – cos u 
 f = u' cos u donc F = – sin u 
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