★Exercice 1 Cours 4,5 points

- 1. Soit ABC un triangle quelconque. Démontrer que $(\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{CB}) \equiv \pi \ [2\pi].$
- (2.) On donne $(\overrightarrow{AB}, \overrightarrow{AC}) \equiv \frac{\pi}{5} [2\pi]$ et $(\overrightarrow{BC}, \overrightarrow{BA}) \equiv -\frac{\pi}{4} [2\pi]$. En déduire la mesure principale de $(\overrightarrow{CA}, \overrightarrow{CB})$.

★Exercice 2 QCM3 points

Pour chacune des questions suivantes, une seule des réponses proposées est exacte. On demande de cocher la case correspondant à cette réponse.

Une bonne réponse rapporte 1 point. Une mauvaise réponse enlève 0,5 point. L'absence de réponse n'apporte ni n'enlève aucun point. Si le total des points est négatif, la note globale attribuée à l'exercice est 0.

- 1. La mesure principale d'un angle orienté de vecteurs dont une mesure est de $-\frac{127\pi}{6}$ est :
- $\Box -\frac{7\pi}{6}$
- $\Box \frac{5\pi}{6}$

- $\Box -\frac{5\pi}{6}$
- [2.] L'ensemble solution de l'équation $\cos(x) = -\frac{1}{2} \sin \left[-\pi; \pi \right]$ est :

$$\square S = \left\{ \frac{2\pi}{3}; \frac{4\pi}{3} \right\}$$

$$\Box \ S = \left\{ \frac{2\pi}{3}; \frac{4\pi}{3} \right\} \qquad \Box \ S = \left\{ -\frac{2\pi}{3}; -\frac{\pi}{3} \right\} \qquad \Box \ S = \left\{ -\frac{\pi}{3}; \frac{\pi}{3} \right\} \qquad \Box \ S = \left\{ -\frac{2\pi}{3}; \frac{2\pi}{3} \right\}$$

$$\square S = \left\{ -\frac{\pi}{3}; \frac{\pi}{3} \right\}$$

$$\square S = \left\{ -\frac{2\pi}{3}; \frac{2\pi}{3} \right\}$$

★Exercice 3 14,5 points

AIL est un triangle équilatéral direct. Les triangles BAL et CIL sont rectangles isocèles, respectivement en L et I, directs.

Partie A

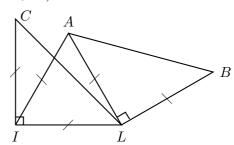
- 1. Déterminer la mesure principale des angles orientés $(\overrightarrow{AB}, \overrightarrow{AL})$ et $(\overrightarrow{AL}, \overrightarrow{AI})$
- (a) Calculer la mesure de l'angle géométrique $\widehat{I}A\widehat{C}$.
 - (b) En déduire la mesure principale de l'angle orienté $(\overrightarrow{AI}, \overrightarrow{AC})$
- $\boxed{3.}$ Démontrer que les points A, B et C sont alignés.

Partie B

Déterminer la mesure principale des angles orientés suivants :

$$(\overrightarrow{AB}, \overrightarrow{LB}).$$

$$(2.)$$
 $(\overrightarrow{BL}, \overrightarrow{LI}).$



 $(\overrightarrow{IC}, \overrightarrow{LB}).$

★Exercice 1

[1.] Soit ABC un triangle quelconque.

$$(\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{CB}) \equiv (\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, -\overrightarrow{AB}) + (-\overrightarrow{AC}, -\overrightarrow{BC}) [2\pi]$$

$$\equiv (\overrightarrow{AB}, \overrightarrow{AC}) + \pi + (\overrightarrow{BC}, \overrightarrow{AB}) + (\overrightarrow{AC}, \overrightarrow{BC}) [2\pi]$$

$$\equiv \pi + (\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{AC}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{AB}) [2\pi]$$

$$\equiv \pi + (\overrightarrow{AB}, \overrightarrow{AB}) [2\pi] \text{ (d'après la relation de Chasles)}$$

$$\equiv \pi + 0 [2\pi]$$

$$\equiv \pi [2\pi]$$

On a donc bien dans tout triangle ABC, $(\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{CB}) \equiv \pi \ [2\pi]$.

 $\boxed{2.} \ \ \text{D'après la question 1, } (\overrightarrow{AB}, \overrightarrow{AC}) + (\overrightarrow{BC}, \overrightarrow{BA}) + (\overrightarrow{CA}, \overrightarrow{CB}) \equiv \pi \ [2\pi] \ \text{soit} \ \frac{\pi}{5} - \frac{\pi}{4} + (\overrightarrow{CA}, \overrightarrow{CB}) \equiv \pi \ [2\pi]$ $\operatorname{donc}\ (\overrightarrow{CA},\overrightarrow{CB}) \equiv \pi - \frac{\pi}{5} + \frac{\pi}{4}\ [2\pi], \ \operatorname{soit}\ (\overrightarrow{CA},\overrightarrow{CB}) \equiv \frac{21\pi}{20}\ [2\pi], \ \operatorname{soit}\ (\overrightarrow{CA},\overrightarrow{CB}) \equiv \frac{21\pi}{20} - 2\pi\ [2\pi], \ \operatorname{soit}\ (\overrightarrow{CA},\overrightarrow{CB}) \equiv \frac{21\pi}{20} - 2\pi\ [2\pi]$ $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv -\frac{19\pi}{20} [2\pi].$ $-\frac{19\pi}{20} \in]-\pi;\pi]$ donc la mesure principale de $(\overrightarrow{CA},\overrightarrow{CB})$ est $-\frac{19\pi}{20}$.

★Exercice 2 QCM

- 1. La mesure principale d'un angle orienté de vecteurs dont une mesure est de $-\frac{127\pi}{6}$ est :
 - $\Box -\frac{\pi}{6}$

- $\Box -\frac{7\pi}{6}$
- $\boxtimes \frac{5\pi}{6}$

- $\Box -\frac{5\pi}{6}$
- [2.] On sait que la fonction f est dérivable en 2, que le nombre dérivé de f en 2 vaut -3 et que, de plus, f(2) = -4. Alors l'équation réduite de la tangente à la courbe représentative de f au point d'abscisse
 - \square y = 2x 3
- $\boxtimes y = -3x + 2$
- $\Box y = -3x 4$
- $\Box y = -3$
- 3. L'ensemble solution de l'équation $\cos(x) = -\frac{1}{2} \sin \left[-\pi; \pi \right]$ est :

 - $\Box \ S = \left\{ \frac{2\pi}{3}; \frac{4\pi}{3} \right\} \qquad \Box \ S = \left\{ -\frac{2\pi}{3}; -\frac{\pi}{3} \right\} \qquad \Box \ S = \left\{ -\frac{\pi}{3}; \frac{\pi}{3} \right\} \qquad \boxtimes \ S = \left\{ -\frac{2\pi}{3}; \frac{2\pi}{3} \right\}$

★Exercice 4

Partie A

- 1. Le triangle BAL est un triangle isocèle rectangle en B direct, donc $(\overrightarrow{AB}, \overrightarrow{AL}) \equiv -\frac{\pi}{4} [2\pi]$; $-\frac{\pi}{4} \in]-\pi;\pi]$ donc la mesure pricipale de $(\overrightarrow{AB}, \overrightarrow{AL})$ est $-\frac{\pi}{4}$.
 - Le triangle AIL est un triangle équilatéral direct, donc $(\overrightarrow{AL}, \overrightarrow{AI}) \equiv -\frac{\pi}{3} [2\pi];$ $-\frac{\pi}{3} \in]-\pi;\pi]$ donc la mesure principale de $(\overrightarrow{AL}, \overrightarrow{AI})$ est $-\frac{\pi}{3}$.
- - (b) Le triangle AIC est indirect, donc $(\overrightarrow{AI}, \overrightarrow{AC}) \equiv -\frac{5\pi}{12} [2\pi]$; $-\frac{5\pi}{12} \in]-\pi;\pi]$ donc la mesure principale de $(\overrightarrow{AI}, \overrightarrow{AC})$ est $-\frac{5\pi}{12}$.

 $\boxed{1.}$ Calcul de $(\overrightarrow{AB}, \overrightarrow{LB})$:

$$(\overrightarrow{AB}, \overrightarrow{LB}) \equiv (-\overrightarrow{BA}, -\overrightarrow{BL}) [2\pi]$$

$$\equiv (\overrightarrow{BA}, \overrightarrow{BL}) [2\pi]$$

$$\equiv \frac{\pi}{4} [2\pi] \qquad \text{(car } BAL \text{ est rectangle isocèle en } L \text{ et direct)}$$

$$\frac{\pi}{4} \in]-\pi;\pi] \text{ donc } \mathbf{la } \mathbf{mesure } \mathbf{principale } \mathbf{de } (\overrightarrow{AB}, \overrightarrow{LB}) \mathbf{est } \frac{\pi}{4}.$$

(2.) Calcul de $(\overrightarrow{BL}, \overrightarrow{LI})$:

$$(\overrightarrow{BL},\overrightarrow{LI}) \equiv (-\overrightarrow{LB},\overrightarrow{LI}) [2\pi]$$

$$\equiv \pi + (\overrightarrow{LB},\overrightarrow{LI}) [2\pi]$$

$$\equiv \pi + (\overrightarrow{LB},\overrightarrow{LA}) + (\overrightarrow{LA},\overrightarrow{LI}) [2\pi] \quad \text{(d'après la relation de Chasles)}$$

$$\equiv \pi + \left(\frac{\pi}{2}\right) + \left(\frac{\pi}{3}\right) [2\pi]$$

$$\equiv \frac{11\pi}{6} [2\pi]$$

$$\equiv \frac{11\pi}{6} - 2\pi [2\pi]$$

$$\equiv -\frac{\pi}{6} [2\pi]$$

 $-\frac{\pi}{6} \in]-\pi;\pi]$ donc la mesure principale de $(\overrightarrow{BL},\overrightarrow{LI})$ est $-\frac{\pi}{6}$.

 $\boxed{3.}$ Calcul de $(\overrightarrow{IC}, \overrightarrow{LB})$:

$$(\overrightarrow{IC}, \overrightarrow{LB}) \equiv (\overrightarrow{IC}, \overrightarrow{IL}) + (\overrightarrow{IL}, \overrightarrow{LB}) [2\pi] \qquad \text{(d'après la relation de Chasles)}$$

$$\equiv (\overrightarrow{IC}, \overrightarrow{IL}) + (-\overrightarrow{LI}, -\overrightarrow{BL}) [2\pi]$$

$$\equiv (\overrightarrow{IC}, \overrightarrow{IL}) + (\overrightarrow{LI}, \overrightarrow{BL}) [2\pi]$$

$$\equiv (\overrightarrow{IC}, \overrightarrow{IL}) - (\overrightarrow{BL}, \overrightarrow{LI}) [2\pi]$$

$$\equiv -\frac{\pi}{2} + \frac{\pi}{6} [2\pi] \qquad \text{(d'après la question 2)}$$

$$\equiv -\frac{\pi}{3} [2\pi]$$

 $-\frac{\pi}{3} \in]-\pi;\pi]$ donc la mesure principale de $(\overrightarrow{IC},\overrightarrow{LB})$ est $-\frac{\pi}{3}$.